Laboratory Evaluation of Fiber-Reinforced Polymer Dowel Bars for Jointed Concrete Pavements

Yi Bian
Erwin Kohler
John Harvey

TRB Annual Meeting, Washington D.C.
January 24th, 2007
Introduction

• LTE controls ride quality and structural life
• LTE by aggregate interlock or dowel bars
• Aggregate interlock reduced by
 – abrasion & shrinkage
 – slabs thermal contraction
• Steel dowel bars are susceptible to corrosion
• Low LTE \rightarrow cracking & faulting
UCPRC Project on Dowel Bar Retrofit

• General objective: Evaluate DBR and best options for implementation

• Work components
 1. APT testing
 2. Lab testing
 – steel dowel corrosion
 – FRP
 3. Field Live Traffic Testing
 4. …Modeling (FEM, LCCA)
APT Testing
HVS testing, Ukiah

Results:

- No damage to any of the DBR joints, or loss of LTE
- Greater increase in deflections at non-DBR joints

Epoxy-coated steel dowels
HVS testing, Palmdale

Results:

- No damage to any of the DBR joints, or loss of LTE
- Fatigue cracking of the slab

1. Epoxy-coated steel
2. Hollow stainless steel dowels
3. Fiber-reinforced polymer (FRP)
Palmdale DBR

- Epoxy
- Hollow Epoxy
- Epoxy (3)
- FRP
- Epoxy
- FRP
Dowel types in Palmdale DBR

1. Epoxy-coated steel
2. Hollow stainless steel dowel
3. Fiber-reinforced polymer (FRP)
Lab: Corrosion of steel dowels
Lab testing: corrosion

1. bare carbon steel
2. stainless steel clad
3. grout-filled hollow stainless steel
4. microcomposite steel
5. carbon steel coated with flexible epoxy (green)
6. carbon steel coated with non-flexible epoxies (purple)
7. carbon steel coated with non-flexible epoxies (gray)

Results:
1. Recommend that **uncoated carbon steel dowels** not be used
2. Epoxy dowels present risk of corrosion at scrapes and the ends
3. Recommend use of **stainless steel clad, hollow stainless steel, or micro-composite** for locations with risk of high chloride exposure
Regular steel dowels
Epoxy-coated steel

- Defects are inevitable
 - pinholes, voids and mechanical scrapes & scratches (macroscopic and microscopic)
- Localized corrosion initiated at the defects
 ➔ accumulated oxide will further lift the coat
Problems at joints w/corroded bars

- Corrosion products expand and lock the joints
 - Expansive products Fe(OH)_2, (Fe_3O_4) and (Fe_2O_3)
 Volume 6 times greater

- Decreased LTE due to volume reduction after the corrosion products are washed away

- Cracking concrete
 Corrosion \rightarrow spalling & transverse cracking
Lab: FRP Evaluation
FRP

- High strength-to-weight ratio
- Excellent resistance to electrochemical corrosion
- Used extensively to repair and strengthen reinforced concrete beams and columns
Caltrans’ Questions

• Are the mechanical properties of FRP dowels adequate to perform acceptably (compared to steel dowels)?

• Are the FRP mechanical characteristics negatively affected by environmental factors?
Experimental Set Up

• The study consisted of evaluating the flexural and shear properties of glass FRP dowel bars
• 1.5-in diameter and 18-in long, from 2 manufacturers
Properties of the FRP dowel bars

<table>
<thead>
<tr>
<th></th>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass fiber content</td>
<td>70%</td>
<td>Min. 65%, typical 72-73%</td>
</tr>
<tr>
<td>Glass type</td>
<td>E-type glass</td>
<td>E-type glass</td>
</tr>
<tr>
<td>Matrix type</td>
<td>Polyester resin</td>
<td>Epoxy Vinyl Ester resin</td>
</tr>
</tbody>
</table>
Conditioning

1. Alkaline solution
 • glass FRP could be highly sensitive to alkaline attack
 • specimens submerged in alkali solution for 3 months
 • pH level for the alkali solution was 13.5

2. Water
 • Simulate high moisture content
 • submerged in water for 3 months in plastic tanks

3. Ultraviolet radiation
 • bond dissociation between fiber and matrix
 • bars exposed to direct sunshine for 2 months (July and August)
Results outline

- Flexural Tests
 - Flexural Stiffness
 - Flexural Strength
 - Flexural Fatigue

- Shear Tests
 - Shear Strength
 - Shear Fatigue

- Direct shear strength
1. Type B is 20% stiffer than Type A bars
2. Type A bars unaffected by conditioning processes
3. Stiffness in conditioned Type B bars decreased:
 - 4% for water conditioned
 - 6% for UV conditioned specimens

- 20°C
- Avg loading freq. of 2, 6, and 10 Hz
- Two replicates
- COV <2%
1. Type B is stiffer than Type A bars
2. Frequency (2 to 10 Hz) had no effect on dowel stiffness
3. Temperature effect
Stiffness versus temperature

At 40°C bars are softer than at 20°C.
→ 9% for Type A
→ 15% for Type B

Should not significantly impair the pavement’s performance:

FEM → max concrete stress is mostly unaffected when
dowel stiffness changes 10 – 20%
1. Type B strength is 80% greater than Type A
2. 1% < COV < 4%, except for one (two replicates).
3. Type B alkali conditioned bars:
 - COV =19% (four replicates)
 - More on that
Damage on Type B bars after exposure to alkaline solution

- Visible cracks on one or both ends of the dowel
- Cracks could be observed before any load application
- Only on alkali conditioned specimens
Flexural Fatigue

\[n = 10^{(12.75 - 12.74S)} \] , \hspace{1cm} R^2 = 0.9475
Stiffness during flexural fatigue

All tested specimens tend to fail when the stiffness drop to 15 – 20 GPa
Shear strength

- Control
- Alkali conditioned
- Water conditioned
- UV conditioned

Shear Strength (MPa)
Shear fatigue life

Shear fatigue life, n (cycles).

Type A > Type B bars in shear fatigue life
Direct shear
Direct shear strength

![Bar chart showing direct shear strength of Type A and Type B materials under control, alkali conditioned, water conditioned, and UV conditioned conditions.](chart)
Summary and conclusions

1. Stiffness for FRP bars:
 - It’s not influenced by loading frequency (in the range of 2 to 10 Hz)
 - It is affected by testing temperature (<20% at 40°C)

2. Type B bars are ~20% stiffer, 80% stronger in bending, and 100% stronger in shear than Type A bars

In bending, Type B are two times stronger than typical steel bars
Type A bars are ~30% stronger than steel
Summary and conclusions

3. Strength of Type B bars might be reduced by the high pH environment within the concrete slabs
 – Type A bars were not affected by any of the three conditioning types
 – Water and UV conditioning had no effect in either Type A or B bars
Summary and conclusions

4. Fatigue

- both types of bars offer similar flexural fatigue performance
- greater number of shear cycles can be expected from Type A bars
- At low stress ratio (0.3 to 0.4), both types of FRP bars will likely survive more than 100 millions wheel load repetitions
Thanks

Erwin Kohler
University of California Pavement Research Center

Project Scientist, PhD
Civil and Environmental Engineering, UC-Davis
530-754-8699
ekohler@ucdavis.edu