DURABILITY STUDIES ON GFRP REINFORCING BARS IN CONCRETE STRUCTURES CONDUCTED AT THE UNIVERSITY OF SHERBROOKE

Brahim Benmokrane
NSERC Research Chair in Innovative FRP Composites for Infrastructures
ISIS Canada Project Leader
Department of Civil Engineering
Université de Sherbrooke, Sherbrooke, Quebec
OBJECTIVES

To determine the effect of ageing in the field on GFRP materials used as main reinforcement in five concrete bridges in Canada.

1. Joffre Bridge, QC (ribbed-deformed C-BAR, 2 types);
2. Crowchild Bridge, AB (ribbed-deformed C-BAR);
3. Hall’s Harbour, NS (sand-coated ISOROD bar);
4. Waterloo Creek, BC (NEFMAC grid);
5. Chatham, ON (NEFMAC grid).

SPECIFIC: Microscopic and physico-chemical analysis on core samples.
TECHNIQUES

<table>
<thead>
<tr>
<th>ANALYSIS</th>
<th>TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OM</td>
</tr>
<tr>
<td>GFRP/Concrete Interface</td>
<td>✓</td>
</tr>
<tr>
<td>Micro-cracking and Physical Degradation of Fibres, Resin and Glass Fibres/Resin Interface</td>
<td></td>
</tr>
<tr>
<td>Degradation and Thermal Properties of Resin Matrix</td>
<td></td>
</tr>
<tr>
<td>Chemical Degradation of Resin</td>
<td></td>
</tr>
<tr>
<td>Concrete Structure</td>
<td></td>
</tr>
</tbody>
</table>

OM: Optical Microscopy; **SEM**: Scanning Electronic Microscopy; **DSC**: Differential Scanning Calorimetry; **FTIR**: Fourier Transform Infrared Spectroscopy.
RESULTS

Optical Microscopy:

- Joffre Bridge X8
- Crowchild Bridge X40
- Hall’s Harbour Bridge X40

Interface concrete/ GFRP:

- Intimate
- No debonding
- No microcracking
- No void
Scanning Electronic Microscopy:

- No resin microcracking
- No glass fibre degradation
- No significant delamination/debonding
RESULTS (Cont…)

Differential Scanning Calorimetry:

Thermogramm of 9mm GFRP bar from Joffre Bridge
(left: in service and right: reference)

- No glass transition (Tg) decrease
- No sign of chemical degradation of the resin
RESULTS (Cont…)

Calorimetry Results for GFRP Materials: Glass Transition Temperatures \((T_g) \)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tg (1st run) ((^\circ C))</th>
<th>Tg (2nd run) ((^\circ C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBB (Ref.) (15 mm)</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>JBB (15 mm)</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>JBS (Ref.) (9 mm)</td>
<td>123</td>
<td>126</td>
</tr>
<tr>
<td>JBS (9 mm)</td>
<td>127</td>
<td>128</td>
</tr>
<tr>
<td>CB</td>
<td>126</td>
<td>129</td>
</tr>
<tr>
<td>HH (Ref.)</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>HH</td>
<td>123</td>
<td>125</td>
</tr>
<tr>
<td>WC</td>
<td>78</td>
<td>117</td>
</tr>
<tr>
<td>CHB</td>
<td>98</td>
<td>116</td>
</tr>
</tbody>
</table>
RESULTS (Cont…)

Infrared (FTIR):

FTIR spectra of Joffre Bridge GFRP (C-BAR 9 mm) (left: reference; right: core sample)

- No chemical degradation (hydrolysis)
RESULTS (Cont…)

X-Ray Diffraction:

X-Ray diffratogramm of Crowchild Bridge Concrete Samples

- Concrete not affected
CONCLUSIONS

- The adhesion of concrete to GFRP reinforcement has not been affected with time under field conditions.
- The different components of the reinforcement did not show any significant changes due to the service.
- The resin matrix and glass fibres were not affected by chemical degradation.
- The concrete embedding the different GFRP materials was not affected.
- The different microstructural analyses performed demonstrate that the GFRP bars have not been affected by the service conditions.